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We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave
approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in
phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing
vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over
a longer time for the coherent state centered in a regular region of the phase space. We also study the
distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations
among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.
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I. INTRODUCTION

Chaos plays a key role in studying the boundary between
the classical and quantum worlds not only because of the
importance of chaos in classical physics �1� but also because
there is no direct analog of chaos in quantum mechanics.
Then, it is natural to study the quantum properties of a
Hamiltonian, of which the classical analog is nonintegrable
and therefore displays chaotic dynamic behaviors �2�. Vari-
ous signatures of quantum chaos have been identified, such
as the spectral properties of the generating Hamiltonian �3�,
phase-space scarring �4�, hypersensitivity to perturbation �5�,
and fidelity decay �6–9�, which indicate an underlying cha-
otic presence in the corresponding quantum dynamics. Re-
cently, the entanglement has been identified as another sig-
nature of quantum chaos �10–18�. The entanglement inherent
in quantum-chaotic systems can provide a valuable approach
to quantum chaos.

Entanglement and squeezing are two typical purely quan-
tum effects. Interestingly, it was found that spin squeezing
�19–23� is closely related to and implies quantum entangle-
ment �21�. To be more exact, if a spin state with a certain
parity is spin squeezed according to the definition from Kita-
gawa and Ueda �19�, a quantitative relation is obtained be-
tween the spin squeezing parameter and the concurrence
�24�, which quantifies the entanglement of two spin-half par-
ticles �25,26�. The close relationship between the entangle-
ment and spin squeezing, as well as the entanglement as a
signature of quantum chaos, motivate us to explore the role
of spin squeezing in quantum-chaotic spin systems. The re-
lations between light squeezing and quantum chaos have
been studied �27�, however, relations between spin squeezing
and quantum chaos were less addressed �28�.

The quantum-chaotic properties �29� of the Dicke model
�DM� without rotating-wave approximation �RWA� �30�
have been extensively studied, and spin squeezing has also
been investigated very recently �31,32� but without being
connected with the chaos. In this work, we consider the
quantum DM �33–38�, an interaction model of the radiation
field with a collection of two level atoms, which exhibits
chaos without RWA. The phase space of the DM is finite,
and the Poincaré section of the phase space is compact which

allows analysis of quantum and classical dynamics and fa-
cilitates the study of the role of spin squeezing in the system.
There are several definitions of spin squeezing in the litera-
ture �19–22�. Typically, there are two types of spin squeezing
defined in spin-j systems from Kitagawa et al. �19� and
Wineland et al. �20�, where j=N /2 and N is the number of
atoms. In our study, we use the first definition quantified by
the following spin squeezing parameter:

�2 =
2��Jn��

�2

j
=

4��Jn��
�2

N
, �1�

where the subscript n�� refers to an axis perpendicular to the

mean spin direction �MSD� n�1= �J�� / ��J���, in which the vari-

ance ��J�2 is minimal, and Jn��
=J� ·n��. The inequality �2

�1 indicates that the system is spin squeezed.
We study the dynamical behaviors of the spin squeezing

quantified by �2 for specific initial states. In the DM, we
show that the spin squeezing disappears after a very short
time for an initial coherent state �CS� centered in a chaotic
region, while it persists over a longer time for the initial CS
centered in a regular region of the classical phase space. In
other words, the spin squeezing can reveal the chaotic and
regular structures in phase space.

The paper is organized as follows. In Sec. II, we introduce
the DM and its corresponding classical Hamiltonian. In Sec.
III, we study in detail dynamical evolutions of spin squeez-
ing parameter and examine distributions of MSDs during the
quantum dynamics. The spin squeezing vanishing time is
introduced in order to characterize spin squeezing and study
classical-quantum correspondence. We make comparisons
among the dynamics of the spin squeezing, bosonic quadra-
ture squeezing, and two-qubit quantum entanglement. The
conclusions are given in Sec. IV.

II. DICKE MODEL

The DM describes the dipole interaction of N two-level
atoms with n bosonic field modes. Here we shall only con-
sider the single-mode radiation field case with n=1. A stan-
dard approach to such quantum-optics Hamiltonian is to
make the RWA, rendering the model integrable. We do not
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make the RWA here, so the DM Hamiltonian is written as
��=1 hereafter�

H = �Jz + �0a†a +
R

�2j
�J+a + J−a†� +

R�
�2j

�J+a† + J−a� ,

�2�

where � and �0 are frequencies associated with free Hamil-
tonians for atoms and field, respectively. R and R� are the
coupling parameters. The usual RWA is recovered by setting
R�=0. The field observables are described by means of the
creation and annihilation operators a and a†, j is the length of
the collective spin operators, Jz is the operator of the atomic
inversion, and J� are the collective atomic pseudospin op-
erators. They satisfy the SU�2� Lie algebra,

�J+,J−� = 2Jz, �Jz,J�� = � J�. �3�

The Hilbert space of this algebra is spanned by the Dicke
states �j ,m��m=−j ,−j+1, . . . , j−1, j�, which are the eigen-
states of J2 and Jz with the eigenvalues j�j+1� and m. The
pseudospin operators act on these states as J��j ,m�
=�j�j+1�−m�m�1��j ,m�1�. This model is used to de-
scribe both cavity quantum electrodynamics �QED� experi-
ments �39,40� and trapped-ion systems, where interactions
with different couplings R�R� can be obtained �41,42�.

In our case, we take the initial states to be CS, namely,
minimum uncertainty wave packets centered in the corre-
sponding classical phase spaces, which allows us to explore
the relation between the spin squeezing and classical chaos.
The initial quantum states chosen in the present study are as
follows:

���0�� = ��� � �	� 	 ��	� , �4�

where ��	� is a product of the atomic and field CS defined as
�43�

��� = �1 + ����−je�J+�j,− j� , �5�

�	� = e−		�/2e	a†
�0� . �6�

Here j=N /2 and �0� is the bosonic field ground state. The
variables � and 	 can be written as a function of the classical
variables in the corresponding phase spaces �44�,

� =
p1 + iq1

�4j − �p1
2 + q1

2�
, �7�

	 =
1
�2

�p2 + iq2� , �8�

where q1 , p1 ,q2 , p2 describe the phase space of the system
under consideration with indices 1 and 2 for the atomic and
field subsystems, respectively. For spin coherent state ���,
the mean atom number �N�= �j+Jz� is proportional to the
quantity ���2 �45�. This state can be regarded as a binomial
state which comes from the fact that their atom distribution
is simply a binomial distribution, and the absolute value ���
normally ranges between 0 and 1 �46�. For the bosonic co-
herent state �	�, �	�2 represents the mean photon number,

which ranges from 0 to 
 in principle. The phases of � and
	 is from 0 to 2�.

The classical Hamiltonian corresponding to Eq. �2� can be
obtained by a standard procedure as �43,47�

H�q1,p1,q2,p2� = ��	�H��	�

=
�

2
�p1

2 + q1
2 − 2j� +

�0

2
�p2

2 + q2
2�

+
�4j − �p1

2 + q1
2�

4j
�R+p1p2 + R−q1q2� ,

�9�

with R�=R�R�.
The classical dynamics associated with this Hamiltonian

were explored before �44�. It is shown that the integrable
situations are recovered when either R or R� is zero. Our aim
is to investigate the time evolution of the initially quasiclas-
sical wave packet along with the occurrence of atomic spin
squeezing. Particularly, we are looking for the possible dif-
ferences in the wave-packet dynamics when we compare the
case of an initial quantum state centered in a chaotic region
and one in a regular region of the classical phase space. The
connection with the classical dynamics is established by
choosing CSs as initial states centered at the corresponding
points of the phase space. Then, we let the system evolve by
means of Hamiltonian �2� and explore the spin squeezing
dynamics by solving numerically the Schrödinger equation.
In Fig. 1, we show the Poincaré section of the classical coun-
terpart for the spin degree of freedom defined by the section
q2=0 in the four-dimensional phase space so that every time
a trajectory pierces this section with p2�0 or p2�0 the
corresponding point �q1 , p1� is plotted. Here, the total en-
ergy is fixed at E=8.5, j=9 /2, and �=�0=1. The limit of
atomic phase space is indicated by a border at radius equal to
�4j. In the plot, we choose the coupling parameters R=0.5
and R�=0.2, which yields a mixture of regular and chaotic
areas of a significant size. Fixed points and near-periodic
orbits surrounded by the chaotic sea are evident.

Here, we choose a relatively lower value of j=9 /2. Our
aim is to study the corresponding relations between spin
squeezing and the classical chaotic dynamics, and the classi-
cal limit means that the value of particle number N ap-

−5 0 5
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5

q
1

p 1

0 5
q

1

(a) (b)

FIG. 1. The Poincaré section for the spin degree of freedom in
the resonant case ��=�0=1�, energy E=8.5, and j=4.5 in a nonin-
tegrable case �R=0.5 and R�=0.2�. �a� Section with q2=0.0 and
p2�0.0; �b� Section with q2=0.0 and p2�0.0.
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proaches infinity, while the spin squeezing, a typical purely
quantum effects, requests a lower value of j=N /2, which
ensures manifestation of quantum properties. So, an interme-
diate value of j is needed. We have checked the values of j
=17 /2,21 /2,50 /2 and found that the results of spin squeez-
ing were qualitatively the same as the case of j=9 /2. More-
over, in order to compare our results with those on relations
between linear entropy and chaos in Ref. �11�, the value j
=9 /2 is chosen.

III. DYNAMICS OF SPIN SQUEEZING

Now, we study dynamics of spin squeezing and first con-
sider the MSDs. It will be found that the MSDs display in-
teresting behaviors due to the presence of quantum chaos.

A. Mean spin directions

According to the definitions of spin squeezing, we first
need to know the MSDs determined by expectation values
�J
� with 
� 
x ,y ,z�. The mean spin direction n�1 can be
written in the spherical coordinate as

n�1 = �sin � cos �,sin � sin �,cos �� , �10�

where � and � are the polar angle and azimuthal angle, re-
spectively. The angles � and � are given by

� = arccos� �Jz�

�J��

 ,

� = �arccos� �Jx�

�J��sin���

 if �Jy� � 0

2� − arccos� �Jx�

�J��sin���

 if �Jy� � 0,� �11�

where �J��=��Jx�2+ �Jy�2+ �Jz�2 is the magnitude of the mean
spin. Here we also give the following two directions: n�2= �
−sin � , cos � ,0� and n�3= �−cos � cos � ,−cos � sin � , sin ��,
both perpendicular to n�1. The above expressions are valid for
��0,�. For �=0,�, the mean spin is along the �z direc-
tion, and the possible choices of � can be �=0,�.

We study quantum dynamics with initial states in different
regions of the phase space—chaotic, regular, and intermedi-
ate from the regular to the chaotic. For convenience, we fix
q1=0 and vary p1 in Fig. 1�a�. This line on the section in-
cludes all these regions we are exploring. For the regular
regions, we choose two representative points p1=2.0 and
p1=−3.5; for the chaotic regions, we choose p1=0 and p1=
−1.0; and for the intermediate regions, we choose p1=1.5
and p1=−1.5.

In Fig. 2, we plot the MSDs for different initial states with
a fixed q1=0 and different p1. We observe that the MSDs are
localized in a fixed region for initial states centered in a
regular region. For p1=2.0, the fixed region is approximately
limited to �

2 ���
3�
4 . When the initial state is centered in the

chaotic region p1=0, the MSDs are randomly over the whole
range of � and �. The case of p1=1.5 displays the interme-
diate behaviors, with the MSDs localized in a finite region

�
2 ����, which is larger than that of the above case of the
regular region. With p1=−1.0, p1=−1.5, and p1=−3.5, the
MSDs exhibit similar behaviors. Then, from the MSDs, we
can qualitatively get some information on the presence of
chaos in the system.

B. Spin squeezing

Having known the MSDs, in order to compute the squeez-
ing parameter, we need to know the following minimal vari-
ance �26�:

��Jn��
�2 = �Jn��

2 � =
1

2
�Jn�2

2 + Jn�3

2 �

−
1

2
���Jn�2

2 − Jn�3

2 ��2 + ��Jn�2
,Jn�3

�+�2, �12�

with

Jn�2
= − Jx sin � + Jy cos � ,

Jn�3
= − Jx cos � cos � − Jy cos � sin � + Jz sin � . �13�

Then, we can numerically calculate the spin squeezing.
We choose two fixed points at q1=0, p1=2.0 and q1=0,

p1=−3.5, which are in the regular regions, and another two
points q1=0, p1=0 and q1=0, p1=−1.0 well in the chaotic
sea, and the numerical results of spin squeezing parameter �2

are shown in Fig. 3. For initial states in the regular region
�see Fig. 3�a��, as the dynamics evolves, the spin squeezing
persists over a relatively longer time �t�9.0�, whereas the
spin squeezing vanishes for states in the chaotic region �see
Fig. 3�b�� after a very short time �t�1.8�.

From the above plots, we observe that the spin squeezing
vanishes at some time after which no squeezing occurs. It
will be convenient to define a spin squeezing vanishing time
tv, which characterizes how long the spin squeezing survives.
By numerical calculations, we find that the vanishing time is
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FIG. 2. Distributions of the mean spin directions for initial states
with q1=0 and different p1 in Fig. 1�a�. Parameters E=8.5, j
=4.5,q2=0, p2�0.
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not symmetric as a function of q1 at a fixed p1, which is
contrary to our expectations from Fig. 1�a�. In other words,
there is no good classical-quantum correspondence. To solve
this problem, we find that in fact we need the Poincaré sec-
tions for both p2�0 and p2�0, which become complete in
the phase space. Then, for a point with same chaotic prop-
erty, there will be two corresponding points �for the case of
q1�0� in Figs. 1�a� and 1�b�, respectively. This is a key
observation, from which we know that there are two initial
coherent states correspond to one classical point in phase
space. One-to-many correspondence often happens between
classical and quantum mechanics. For instance, two different
quantum Hamiltonians may correspond to one classical
Hamiltonian due to the commuting of two classical variables.
Thus, we may define average vanishing time tvm=1 /2�tv�p2
�0�+ tv�p2�0�� and plot tvm versus q1 at a fixed p1.

As seen from Fig. 4 �note that the ranges of q1 are differ-
ent in different subfigures�, we find that the vanishing time is
ideally symmetric with respect to q1. From Fig. 4�a� �p1
=2.0�, a bump region of longer vanishing time is evident,
which corresponds to the big regular island in Fig. 1�a�.
When p2=−1.0, in classical phase space, this line belongs to
chaotic region, so the squeezing vanishing time should be
small, which is just what we observed in Fig. 4�b�. Here, the
vanishing time is small and displays a flat line. When
p1=−3.5, the line crosses a small regular island. We see a flat
region with relatively longer vanishing time in the middle of
Fig. 4�c�, which corresponds to the small island. From the
above analysis, we have found a good classical-quantum cor-
respondence via the study of spin squeezing vanishing time.

We see that the underlying classical chaos indeed controls
the quantum dynamics of spin squeezing in the DM. The
spin squeezing is very sensitive to the classical chaos, and the
classical chaos suppresses the spin squeezing. In contrast, the
classical chaos enhances the bipartite entanglement quanti-
fied by the linear entropy in the DM �11�. So, the underlying
classical chaos has different effect on the two typical purely
quantum-mechanical phenomena; the spin squeezing and the
bipartite entanglement.

C. Relations of spin squeezing, bosonic quadrature squeezing,
and entanglement

In this section, we will first compare dynamical behaviors
between spin squeezing and bosonic quadrature squeezing,
and then study the relations between spin squeezing and pair-
wise entanglement.

1. Comparison of spin squeezing and bosonic quadrature
squeezing

Here, we review bosonic quadrature squeezing. There is a
definition of �2 as a bosonic squeezing parameter, which pro-
vides an atomic squeezing counterpart to determine whether
a state is squeezed. The parameter is given by �48�

�2 = min
���0,2��

��X��2, �14�

where

X� = X cos � + P sin � = ae−i� + a†ei� �15�

with X=X0 and P=X�/2 being special cases. So, the mini-
mum value of ��X��2 with respect to �, and �2�1 indicates
the so-called principle squeezing. And the two quadrature
operators X and P are given by

X = a + a†, P = − i�a − a†� , �16�

where a and a† are the annihilation and creation operators of
a boson, respectively. For a quantum state, from Eq. �14�, we
obtain

�2 = 1 + 2�a†a� − 2��a��2 − 2��a2� − �a�2� .

Having understood the notions of the bosonic quadrature
squeezing, we compare the dynamical behaviors of the two
types of squeezing. In Fig. 5�b�, we show that the bosonic
quadrature squeezing �dashed line� disappears after a very
short time for an initial CS centered in a chaotic region and
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FIG. 3. Dynamical evolution of the spin squeezing parameter �2

for the initial states with q1=0 and different p1. �a� Regular region
corresponding to Fig. 1�a�: p1=2.0 �solid line� and p1=−3.5 �dashed
line�; �b� Chaotic region corresponding to Fig. 1�a�: p1=0 �solid
line� and p1=−1.0 �dashed line�.
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sections in Fig. 1�a�. The other parameters E=8.5 and j=4.5.
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the spin squeezing disappears as well, while the two squeez-
ings persist over a longer time for the CS centered in a regu-
lar region of the classical phase space �see Fig. 5�a��. In other
words, both spin squeezing and bosonic quadrature squeez-
ing can reveal the chaotic and regular structures in phase
space.

We also notice that the two squeezing parameters are
nearly but not completely identical for low time t. One rea-
son for this behavior is that the two parameters are con-
nected, namely, the spin squeezing parameter reduces to the
bosonic one in the limit of large number of atoms N and low
excitations �49�. Another reason is that they all start from
one. Also, the initial spin coherent state reduces to the
bosonic coherent state, and the Hamiltonian reduces to the
two-boson Hamiltonian under the same limit. As we choose
�0=�, the Hamiltonian is symmetric under swapping of two
bosons. However, for larger t, these two parameters become
different due to the complexity of interactions between spins
and bosons in the Dicke model.

2. Comparison of spin squeezing and entanglement

The DM describes a collection of N two-level atoms in-
teracting with a single-mode radiation field. Given the
N-qubit system, we can study entanglement of a pair of qu-
bits �say qubits 1 and 2� by tracing out other N−2 qubits.
Entanglement for the two-qubit mixed state �12=Tr3,. . .,N���
can be quantified by the concurrence �24�. The concurrence
is defined as

C = �1 − �2 − �3 − �4, �17�

with the quantities �i being the square roots of the eigenval-
ues in nonascending order of the matrix product �12��1y
� �2y��12

� ��1y � �2y�. �12
� denotes the complex conjugate of

�12. Here, we remove the max function in the usual definition
of the concurrence, namely, C�0 implies no entanglement.

In Ref. �17�, it is found that the concurrence is suppressed
by chaos in the quantum kicked top model. We will see that
the same conclusion holds for our Dicke model. It was
known that spin squeezing is closely related to entanglement
�21�, and if a state with parity is spin squeezed, the following
relation between the squeezing parameter �2 and the concur-

rence �24� C is obtained �26�: �2=1− �N−1�C. One should
note two conditions for this equality to hold. One is that the
spin states must have a fixed parity, and the other is that it
must be a spin-squeezed state. If a state is not spin squeezed,
we cannot get this relation. For our state vector at time t,
usually there is no fixed parity, so we cannot get the simple
relation between the spin squeezing parameter �2 and C. In
order to make a comparison between spin squeezing and
pairwise entanglement, it is convenient to define the follow-
ing quantity:

��2 = 1 − �N − 1�C , �18�

and see whether the parameter ��2 coincides with �2. If we
use ��2 to characterize the pairwise entanglement, it is clear
that if ��2�1 ���2�1�, the state is entangled �not entangled�.

The numerical results of �2 and ��2 versus time are given
in Fig. 6. In Fig. 6�a�, initially, �2=��2=1 since there exists
no spin squeezing and no entanglement. As dynamics takes
place, �2 and ��2 do not always coincide with each other for
the regular regions. Especially, between t=3 and t=4, there
is a clear difference between them. However, in the squeez-
ing area the two parameters coincide very well for the cha-
otic case in Fig. 6�b�, which indicates that the relation be-
tween the squeezing parameter and the concurrence holds,
namely, �2=1− �N−1�C. In other words, the excellent agree-
ment between �2 and ��2 implies that the spin state may
display a parity symmetry. The numerical results also show
that the agreement is good when we choose different initial
states.

IV. CONCLUSIONS

We have studied the spin squeezing in the DM whose
Hamiltonian dynamics is chaotic in the classical limit and
found that the underlying chaotic motion greatly affects the
spin squeezing properties. Spin squeezing vanishes after a
very short time for an initial CS centered in a chaotic region
of the phase space, whereas the spin squeezing persists over
a longer time for the CS centered in a regular region. Mani-
festation of chaotic motion is found in the MSDs, which
expand over a large area when chaos is present.

As the spin squeezing eventually vanishes in this model,
we have defined the squeezing vanishing time to characterize
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FIG. 5. Parameters �2 �solid line� and �2 �dashed line� versus
time. The other parameters E=8.5 and j=4.5 and �a� q1=0 and p1

=2.0; �b� q1=0 and p1=−1.0.
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FIG. 6. Parameters �2 �circle points� and ��2 �cross� versus time.
The other parameters E=8.5 and j=4.5 and �a� q1=0 and p1=2.0;
�b� q1=0 and p1=−1.0.

SPIN SQUEEZING AS AN INDICATOR OF QUANTUM … PHYSICAL REVIEW E 79, 046220 �2009�

046220-5



the squeezing properties. We have found a good classical-
quantum correspondence via the studies of the vanishing
time. We also studied relations among behaviors of spin
squeezing, bosonic quadrature squeezing, and the pairwise
entanglement. The bosonic quadrature squeezing displays
similar behaviors, and close relationship was found between
the pairwise entanglement and spin squeezing.

The spin squeezing is very sensitive to the underlying
chaos. This means that it is a good indicator of quantum
chaos in the DM model. An adequate way of investigating
the problem of quantum chaos is by studying the dynamics

of intrinsically quantum properties �11�. Spin squeezing is an
important purely quantum-mechanical effect, and here we
have highlighted the connection between spin squeezing and
quantum chaos.
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